Garbage Collection

XA
&

Memory Management
S0 Far

* Some 1tems are preallocated and persist
throughout the program:

* What are they?
Some are allocated on the runtime stack:

- What are they?

- Some are allocated in the heap:

- What are they?

- How do we manage heap-allocated memory?

Manual Memory
Management

* Option One: Have programmer handle
heap allocation and deallocation

« What languages do this?

Advantages?
Disadvantages?

What is a memory leak?

Automatic Memory
Management

Idea:
Runtime environment automatically reclaims memory.

What 1s the garbage?

Advantages?

Disadvantages?

Can you Identify Garbage?

* What i1s garbage at the indicated points?

int main () {
Object x, vy
x = new Object();
Y new Object ()
/* Point A */

x.doSomething () ;
y.doSomething () ;
/* Point B */

y = new Object ()
/* Point C */

Approximating Garbage

In general, undecidable whether an object 1s garbage.

Need to rely on a conservative approximation.

An objectis reachable if it can still be referenced
by the program.

Garbage Collector - Detect and reclaim unreachable objects.

GC Assumptions

- Assume that, at runtime, we can find all
existing references in the program.

- Cannot fabricate a reference to an existing object

Cannot cast pointers to 1ntegers or vice-versa.

- Examples: Java, Python, JavaScript, PHP etc.
- Non-examples: C, C++

GC Types

Incremental vs stop-the-world:

Incremental- run concurrently with program

Stop-the-world - pause program execution to look for
garbage

Which is (generally) more precise?
Which would you use in a nuclear reactor control system?

Compacting vs Non-compacting:

compacting - moves objects around in memory.

non-compacting -leaves all objects where they originated.

Which (generally) spends more time garbage collecting?
Which (generally) leads to faster program execution?

Major Approaches to GC

. Reference Counting

. Mark and Sweep

. Stop and Copy

. Generational

Reference Counting
Technique

* Store 1n each object a reference count (refcount)
tracking how many references exist to the object.

* Create a reference to an object: increments refcount.

* Remove a reference to an object: decrements refcount.

* When object refcount==0, unreachable & reclaimed.

Might decrease other objects' refcounts and trigger more
reclamations.

Reference Counting in
Action

class LinkedList
{ LinkedList
next;

}

int main() {
LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList;

head.next = mid;
mid.next = tail;

mid = tail = null;
head.next.next = null;

head = null;

Reference Counting in
Action

class LinkedList
{ LinkedList
next;

}

int main() {
LinkedlList head = new LinkedList;
LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList;

head.next = mid;
mid.next = tail;

mid = tail = null;
head.next.next = null;

head = null;

Reference Counting in
Action

class LinkedList
{ LinkedList
} next;

head

int main() {
LinkedlList head = new LinkedList;
LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList;

head.next = mid;
mid.next = tail;

mid = tail = null;

head.next.next = null;

head = null;

Reference Counting in
Action

class LinkedList
{ LinkedList

} next;

head N 0

int main () {

LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList;

head.next = mid;
mid.next = tail;

mid = tail = null;

head.next.next = null;

head = null;

Reference Counting in

class LinkedList

{ LinkedList

} next;

int main () {

Action

head

LinkedList head = new LinkedList;

LinkedList mid
LinkedList tail

head.next =

mid.next = tail;

mid = tail =

head.next.next

head = null;

null;

null;

new LinkedList;
new LinkedList;

Reference Counting in
Action

class LinkedList
{ LinkedList

} next;

=

head »

int main () {

LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList;

head.next = mid;
mid.next = tail;

mid = tail = null;

head.next.next = null;

head = null;

Reference Counting in
Action

class LinkedList
{ LinkedList

} next;

=

head »

int main () {

LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList;

head.next = mid;
mid.next = tail;

mid = tail = null;

head.next.next = null;

head = null;

Reference Counting in
Action

class LinkedList
{ LinkedList

} next;
head } 1
int main() {
LinkedList head = new LinkedList; i
mid

LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList;

head.next = mid;
mid.next = tail;

mid = tail = null;

head.next.next = null;

head = null;

Reference Counting in
Action

class LinkedList {
} LinkedList next;

, head } 1

int main () head = new LinkedList;

{ LinkedLi1

st mid

LinkedList mid = new LinkedList;

LinkedList tail = new LinkedList; 0

head.next = mid;

mid.next = tail;

mid = tail = null;

head.next.next = null;

head = null;

Reference Counting in

Action

class LinkedList {
} LinkedList next;

head
int main () head = new LinkedList;

{ LinkedLi1
st mid

LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList;

head.next = mid;
mid.next = tail;

mid = tail = null;
head.next.next = null;

head = null;

Reference Counting in
Action

class LinkedList {
} LinkedList next;

head ” 1

int main () head = new LinkedList;

{ LinkedLi1

st mid

LinkedList mid = new LinkedList;

LinkedList tail = new LinkedList; 44»} 1

head.next = mid;

mid.next = tail;

mid = tail = null;

head.next.next = null;

head = null;

Reference Counting in

class LinkedList {
} LinkedList next;

int main () head =
{ LinkedLi1
St

Action

head
new LinkedList;

mid

LinkedList mid = new LinkedList;

LinkedList tail =
head.next = mid;
mid.next = tail;

mid = tail = null;

new LinkedList;

head.next.next = null;

head = null;

=

=

Reference Counting in

class LinkedList {
} LinkedList next;

Action

head
int main () head = new LinkedList;
{ LinkedLi1
st mid
LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList; tail

head.next = mid;
mid.next = tail;

mid = tail = null;

head.next.next = null;

head = null;

=

=

Reference Counting in

class LinkedList {
} LinkedList next;

int main () head =
{ LinkedLi1
st

LinkedList mid =
LinkedList tail =
head.next = mid;
mid.next = tail;

mid = tail = null
head.next.next =

head = null;

Action

head
new LinkedList;

mid
new LinkedList;
new LinkedList; tail

e
14

null;

=

=

Reference Counting in
Action

class LinkedList {

}

int main () head = new LinkedList;

LinkedList next;

{ LinkedLi1
st

LinkedList mid = new LinkedList;

LinkedList tail = new LinkedList;

head.next = mid;
mid.next = tail;

mid = tail = null;

head.next.next = null;

head = null;

head

mid

tail

v
-

v
-

Reference Counting in

class LinkedList {
} LinkedList next;

int main () head =
{ LinkedLi1
st

LinkedList mid =
LinkedList tail =
head.next = mid;
mid.next = tail;

mid = tail = null
head.next.next =

head = null;

Action

head
new LinkedList;

mid
new LinkedList;
new LinkedList; tail

.
14

null;

-

=

Reference Counting in
Action

class LinkedList {
} LinkedList next;

head ». 1
int main () head = new LinkedList;

{ LinkedLi1
st mid
LinkedList mid = new LinkedList; N L
LinkedList tail = new LinkedList; tail »} 2
head.next = mid;
mid.next = tail;
mid = tail = null; *
head.next.next = null; »’ -

head = null;

Reference Counting in
Action

class LinkedList {
} LinkedList next;

head ». 1
int main () head = new LinkedList;
{ LinkedLi1
st mid
LinkedList mid = new LinkedList; - L
LinkedList tail = new LinkedList; tail »} 2
head.next = mid;
mid.next = tail;
mid = tail = null;
head.next.next = null; »’

head = null;

Reference Counting in
Action

class LinkedList {
} LinkedList next;

head ». 1
int main () head = new LinkedList;
{ LinkedLi1
st mid
LinkedList mid = new LinkedList; N L
LinkedList tail = new LinkedList; tail »} 2
head.next = mid;
mid.next = tail;
mid = tail = null;
head.next.next = null; »’

head = null;

Reference Counting in
Action

class LinkedList {
} LinkedList next;

head ». 1
int main () head = new LinkedList;

{ LinkedLi1
st mid
LinkedList mid = new LinkedList; - L
LinkedList tail = new LinkedList; tail »} 2
head.next = mid;
mid.next = tail;

mid = tail = null;

head.next.next = null;

head = null;

Reference Counting in
Action

class LinkedList {
} LinkedList next;

head ». 1
int main () head = new LinkedList;

{ LinkedLi1
st mid
LinkedList mid = new LinkedList; - L
LinkedList tail = new LinkedList; tail »} 2
head.next = mid;
mid.next = tail;

mid = tail = null;

-

head.next.next = null;

head = null;

Reference Counting in

class LinkedList {
} LinkedList next;

int main () head =
{ LinkedLi1
st

LinkedList mid =

LinkedList tail =

head.next = mid;
mid.next = tail;

mid = tail = null

head.next.next =

head = null;

Action

head
new LinkedList;

mid
new LinkedList;
new LinkedList; tail

.
14

null;

-

Reference Counting in
Action

class LinkedList {

}

int main ()

LinkedList next;

{ LinkedL1
st

LinkedList mid = new LinkedList;

LinkedList tailil = new LinkedList;

head.next = mid;
mid.next = tail;

mid = tail = null;

head.next.next = null;

head = null;

head = new LinkedList;

head

mid

tail

Reference Counting in
Action

class LinkedList {
} LinkedList next;

head ». 1

int main () head = new LinkedList;

{ LinkedLi1

st mid

LinkedList mid = new LinkedList;

LinkedList tail = new LinkedList; tail 1

head.next = mid;

mid.next = tail;

mid = tail = null;
head.next.next = null;

head = null;

Reference Counting in
Action

class LinkedList {
} LinkedList next;

head ». 1

int main () head = new LinkedList;

{ LinkedLi1

st mid

LinkedList mid = new LinkedList;

LinkedList tail = new LinkedList; tail 1

head.next = mid;

mid.next = tail;

mid = tail = null;
head.next.next = null;

head = null;

Reference Counting in
Action

class LinkedList {
} LinkedList next;

head 1

int main () head = new LinkedList;

{ LinkedLi1

st mid

LinkedList mid = new LinkedList;

LinkedList tail = new LinkedList; tail 1

head.next = mid;

mid.next = tail;

mid = tail = null;
head.next.next = null;

head = null;

Reference Counting in
Action

class LinkedList {
} LinkedList next;

head O

int main () head = new LinkedList;

{ LinkedLi1

st mid

LinkedList mid = new LinkedList;

LinkedList tail = new LinkedList; tail 1

head.next = mid;

mid.next = tail;

mid = tail = null;
head.next.next = null;

head = null;

Reference Counting in
Action

class LinkedList
{ LinkedList

next;
head
int main() { (7777777777 }
LinkedList head = new LinkedList; mid
LinkedList mid = new LinkedList; ‘
LinkedList tail = new LinkedList; !
tail 1

head.next = mid;
mid.next = tail;

mid = tail = null;

head.next.next = null;

head = null;

Reference Counting in
Action

class LinkedList {
} LinkedList next;

head
int main () head = new LinkedList;
{ LinkedLi1
st mid
LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList; tail 1
head.next = mid;
mid.next = tail;

mid = tail = null;
head.next.next = null;

head = null;

Reference Counting in
Action

class LinkedList {
} LinkedList next;

head
int main () head = new LinkedList;
{ LinkedLi1
st mid
LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList; tail 0
head.next = mid;
mid.next = tail;

mid = tail = null;
head.next.next = null;

head = null;

Reference Counting in

class LinkedList {
} LinkedList next;

Action

head
int main () head = new LinkedList;
{ LinkedL1
st mid
LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList; tail

head.next = mid;
mid.next = tail;
mid = tail = null;

head.next.next

head = null;

null;

Reference Counting in
Action

class LinkedList
{ LinkedList

} next;
head
int main() {
LinkedList head = new LinkedList; mid
LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList;
tail
head.next = mid;
mid.next = tail;

mid = tail = null;

head.next.next = null;

head = null;

Reference Counting:
One Major Problem

class LinkedList
{ LinkedList
next;

}

int main() {
LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList;

head.next = mid;
mid.next = tail;
tail.next = head;

head = null;
mid = null;
tail = null;

One Major Problem

class LinkedList

{ LinkedList head > 1
} next;
int main () { mid
LinkedList head = new LinkedList; - L
L}nkedL}st mlq = new Llpkedngt; tail »} 2
LinkedList tail = new LinkedList;

head.next = mid;
mid.next = tail;

tall .next = head;

head = null; E—

mid = null;
tail = null;

One Major Problem

class LinkedList
{ LinkedList head > 1
} next;

int main () { mid
LinkedList head = new LinkedList;
L%nkedL%st miq = new LipkedLigt; tail »} 2
LinkedList tail = new LinkedList;

head.next = mid;
mid.next = tail;

tail.next = head;

head = null; —

mid = null;
tail = null;

One Major Problem

class LinkedList
{ LinkedList head > 2
} next;

int main () { mid
LinkedList head = new LinkedList;
L%nkedL%st miq = new LipkedLigt; tail »} 2
LinkedList tail = new LinkedList;

head.next = mid;
mid.next = tail;

tail.next = head;

head = null;

mid = null;
tail = null;

One Major Problem

class LinkedList
{ LinkedList head 2

} next;

int main () { mid
LinkedList head = new LinkedList;
L%nkedL%st miq = new LipkedLigt; tail »} 2
LinkedList tail = new LinkedList;

head.next = mid;
mid.next = tail;

tall .next = head;

head = null; —

mid = null;
tail = null;

One Major Problem

class LinkedList

{ LinkedList head 1
} next;
int main () { mid
LinkedList head = new LinkedList; o
L%nkedL%st miq = new LipkedLigt; tail »} 2
LinkedList tail = new LinkedList;
head.next = mid;
mid.next = tail;
tall .next = head;

head = null; —

mid = null;
tail = null;

One Major Problem

class LinkedList
{ LinkedList head 1

} next;

int main () { mid
LinkedList head = new LinkedList;
L%nkedL%st miq = new LipkedLigt; tail »} 2
LinkedList tail = new LinkedList;

head.next = mid;
mid.next = tail;

tall .next = head;

head = null; —

mid = null;
tail = null;

One Major Problem

class LinkedList

{ LinkedList head 1
} next;
int main () { mid

LinkedList head = new LinkedList;

LinkedList mid = new LinkedList; tail 2

LinkedList tail = new LinkedList;

head.next = mid;
mid.next = tail;

tall .next = head;

head = null; —

mid = null;
tail = null;

One Major Problem

class LinkedList

{ LinkedList head 1
} next;
int main () { mid

LinkedList head = new LinkedList;

LinkedList mid = new LinkedList; tail 1

LinkedList tail = new LinkedList;

head.next = mid;
mid.next = tail;

tall .next = head;

head = null; —

mid = null;
tail = null;

One Major Problem

class LinkedList

{ LinkedList head 1
} next;
int main () { mid
LinkedList head = new LinkedList; L
LinkedList mid = new LinkedList; tail 1

LinkedList tail = new LinkedList;

head.next = mid;
mid.next = tail;

tall .next = head;

head = null; —

mid = null;
tail = null;

One Major Problem

class LinkedList

{ LinkedList head 1
} next;
int main () { mid
LinkedList head = new LinkedList; L
LinkedList mid = new LinkedList; tail 1

LinkedList tail = new LinkedList;

head.next = mid;
mid.next = tail;

tall .next = head;

head = null;

mid = null;
tail = null;

One Major Problem

class LinkedList

{ LinkedList head 1
} next;
int main () { mid

LinkedList head = new LinkedList;
LinkedList mid = new LinkedList; tail
LinkedList tail = new LinkedList;

H -

head.next = mid;
mid.next = tail;
tall .next = head;

head = null;

mid = null;
tail = null;

One Major Problem

class LinkedList

{ LinkedList head 1
} next;
int main () { mid

LinkedList head = new LinkedList;
LinkedList mid = new LinkedList; tail
LinkedList tail = new LinkedList;

H -

head.next = mid;
mid.next = tail;

tall .next = head;

-

head = null;

mid = null;
tail = null;

Does not Reclaim
Reference Cycles

« Arceference cycle is a set of objects that
cyclically refer to one another.

« Because all the objects are referenced, all
have nonzero refcounts and are never
.reclaimed.

* |Issue: Refcount tracks number of references,
.nhot number of reachable references.

« Major problems in languages/systems that

Usg § epefiepe&gounting:

Analysis of Reference

Counting
- Advantages

« Simple to implement.

« Can be implemented as a library on top of
explicit memory management.

* Disadvantages
* Fails to reclaim all unreachable objects.
- Can be slow if a large collection 1s initiated.

* Noticeably slows down assignments.

Mark-and-Sweep

Mark-and-Sweep
Technique

« Given knowledge of what's immediately accessible,
find everything reachable in the program.

« Root Set -set of memory locations in the
program that are known immediately to be
reachable.

- Any objects reachable from the root set are reachable.

- Any objects not reachable from the root set are not
reachable.

-> Graph search starting at the root set

Mark-and-Sweep: The
Algorithm

- Marking phase: Find reachable objects.

* Add the root set to a worklist.
- While the worklist isn't empty:

Remove an object from the worklist.

If not marked, mark and add to the worklist all objects
reachable from that object.

- Sweeping phase: Reclaim free memory.

« For each allocated object:

- If that object isn't marked, reclaim its memory.

— If the object is marked, unmark it (so on the next mark-
and-sweep iteration we have to mark it again).

Work List

Root Set

Work List

Root Set

-

B=

=0

1=

Work List

/-

Root Set

Q

Work List

Root Set

Q

Work List

Root Set

Work List

Root Set

At End of Marking Phase

Work List

mark
Root Set ><

=il

oweep Phase: Sweep Entire Heap

.

Work List

Root Set

mark |
-
1 |

Reclaimed
y sl

B

-

Mark-and-Sweep
Problems

Sweep phase visits all objects to free them or
clear marks.

Amount of space for worklist could potentially
be as large as all of memory.

Can't preallocate this space.

Implementation
Details

* During a mark-and-sweep collection, every allocated
block must be in exactly one of four states:

« Marked: This object is known to be reachable.

* Enqueued: This object is in the worklist.
 Unknown: This object has not yet been seen.

« Deallocated: This object has already been freed.

Augment every allocated block with two bits to
encode which of these four states the object 1s 1n.

Maintain doubly-linked lists of all the objects in each
of these states.

More Efficient:
Baker's Algorithm

.Move entire Root set to the enqueued list.
. While enqueued list is not empty:
.Move first object from enqueued list to marked list.

.For each unknown object referenced, add it to the
enqueued list.

. At this point, everything reachable 1s in marked and
everything unreachable is in unknown.

.Concatenate unknown and deallocated lists

. Deallocates all garbage 1in O(1).

.Move everything from marked list to unknown list.
.Can be done in O(1).

.Indicates objects again must be proven reachable on next
scan.

One Last Detail

« |f we're already out of memory, how do we build
these linked lists?

« Idea: Since every object can only be in one linked
list, embed the next and previous pointers into each
allocated block.

Next Next Next

Previous

Previous

Previous

1]
1]
1]
1.

Object Object Object
Fields Fields Fields

Analysis of Mark-and-

Sweep
- Advantages

- Precisely finds exactly the reachable objects.

- Using Baker's algorithm, runs in time
proportional to the number of reachable objects.

- Disadvantages

* Stop-the-world may introduce huge pause times.

Linked list / state information 1in each allocated block
- uses lots of memory per object.

Stop-and-Copy

Improving
Performance

 There are many ways to improve a program's
performance, some of which can be improved by a good
garbage collector:

- Increasing locality.

* Memory caches often designed to hold adjacent memory
locations.

- Placing objects consecutively in memory can improve
performance by reducing cache misses.

- Increasing allocation speed.

* Many languages (Java, Haskell, Python, etc.) allocate objects
frequently.

- Speeding up object allocation can speed up program
execution.

Increasing Locality

* Idea: During garbage collection, move all
objects iIn memory so they are adjacent to one
another.

- ->compaction.

- Ideally, move objects that reference one
another into adjacent memory locations.

- Garbage collector must update all pointers in all
objects to refer to the new object locations.

Increasing Allocation
Speed

« Typically implementations of malloc and free
use

 free lists, linked lists of free memory blocks.

 Allocating an object requires following
these pointers until a suitable object is
found.

Usually fast, but at least 10 —20 assembly
instructions.

.Contrast with stack allocation —just one assembly
instruction!

Can we somehow get the performance speed of
the stack for dynamic allocation?

The Stop-and-Copy Collector

All of memory

The Stop-and-Copy
Collector

New Space Old Space

The Stop-and-Copy
Collector

Free
Space

The Stop-and-Copy
Collector

Free
Space

The Stop-and-Copy
Collector

Free
Space

The Stop-and-Copy
Collector

The Stop-and-Copy
Collector

Free
Space

The Stop-and-Copy
Collector

b +

Free
Space

The Stop-and-Copy
Collector

/\T‘ | |

Free
Space

The Stop-and-Copy
Collector

Free
Space

The Stop-and-Copy
Collector

b +

»]

Free
Space

The Stop-and-Copy
Collector

b +

» oy 4T

Free
Space

The Stop-and-Copy
Collector

= e .

» oy 4T

Free
Space

The Stop-and-Copy
Collector

= e .

» oy 4T

Free
Space

Out of space!

The Stop-and-Copy
Collector

= e .

b oy AT

Free
Space

Root Set

The Stop-and-Copy
Collector

= e e

b oy AT

Root Set

The Stop-and-Copy
Collector

|
m _ = Eam
N

Free
Space

Root Set

The Stop-and-Copy
Collector

|
= = s
N

Free
Space

Root Set

The Stop-and-Copy
Collector

|
m ' Emm
4

b oy AT

Free
Space

Root Set

The Stop-and-Copy
Collector

m\“

VoY T

Free
Space

The Stop-and-Copy
Collector

|
B ST R S S

S 4T
Free
Space

. —

Root Set

The Stop-and-Copy
Collector

|
. B Ees

S 4T
Free
Space

. —

Root Set

The Stop-and-Copy

Collector
I
S S
A LT
Free
Space

The Stop-and-Copy
Collector

‘i

Free
Space

The Stop-and-Copy
Collector

t—

Free
Space

The Stop-and-Copy
Collector

, i—

Free
Space

The Stop-and-Copy
Collector

, -

Free
Space

The Stop-and-Copy
Collector

,

Free
Space

Root Set

The Stop-and-Copy
Collector

,

Free
Space

Root Set

The Stop-and-Copy
Collector

,

Free
Space

Root Set

The Stop-and-Copy
Collector

, ,

Free
Space

Root Set

The Stop-and-Copy

Collector
|
e D e T "=
> | S N B G
Free
Space
.
Root Set

The Stop-and-Copy

Collector
|
e D e T "=
b T Yy

Free
Space

.

Root Set

The Stop-and-Copy

Collector
|
e D e T "=
b T Yy

Free
Space

.

Root Set

The Stop-and-Copy

Collector
I
 mm «
.%
Free
Space
. —
Root Set

The Stop-and-Copy
Collector

 oem ' +
y o

]

Free
Space

Stop-and-Copy in
Detail

Partition memory into two regions: old space and new space.

Keep track of the next free address in the new space.

To allocate n bytes of memory:

- If n bytes space exist at the free space pointer, use those
bytes and advance the pointer.

- Otherwise, do a copy step.
- To execute a copy step:

- For each object in the root set:
- Copy that object to the start of the old space.

- Recursively copy all objects reachable from that object.

- Adjust the pointers in the old space and root set to point to
new locations.

- Exchange the roles of the old and new spaces.

Implementing Stop and
Copy

« Only tricky part about stop-and-copy is adjusting
pointers in the copied objects correctly.

« Idea: Have each object contain a extra space for a
* forwarding pointer.
* To clone an object:

« First, do a complete bitwise copy of the object.

- All pointers still point to their original locations.

* Next, set the forwarding pointer of the original object to
point to the new object.

- Finally, after cloning each object, for each pointer:

- Follow the pointer to the object it references.

- Replace the pointer with the pointee's forwarding pointer.

Forwarding Pointers

Root Set

Forwarding Pointers

Root Set

Forwarding Pointers

_——~
-
-

Root Set

Root Set

Forwarding Pointers

Forwarding Pointers

Root Set

Forwarding Pointers

Root Set

Forwarding Pointers

\J

Root Set

Analysis of Stop-and-
Copy

- Advantages

- Implementation simplicity (compared to mark-
and-sweep).

- Fast memory allocation; using OS-level tricks,
can allocate in a single assembly instruction.

- Excellent locality; depth-first ordering of copied
objects places similar objects near each other.

* Disadvantages
 Requires half of memory to be free at all times.

* Collection time proportional to number of bytes
used by objects.

Hybrid Approaches

« The

The Best of All Worlds

best garbage collectors in use

today are based on a combination of

sma
« Eac

ler garbage collectors.

n garbage collector is targeted

to reclaim specific types of garbage.

« Usually has some final “fallback”
garbage collector to handle
everything else.

Objects Die Young

« The Motto of GC: Objects Die Young.
« Most objects have very short lifetimes.

Objects allocated locally in a function.

Temporary objects used to construct larger
objects.

- Optimize GC to reclaim young objects rapidly
while spending less time on older objects.

Generational GC

Partition memory into several “generations.”
Objects always allocated in the first generation.

When the first generation fills up, garbage collect it.

Runs quickly; collects only a small region of memory.

* Move objects that survive in the first generation
long enough into the next generation.

- When no space can be found, run a full (slower)
garbage collection on all of memory.

Generational GC Technique

« New objects are allocated using a modified stop-and-
copy collector in the Eden space.

« When Eden runs out of space, the stop-and-copy
collector moves its elements to the survivor space.

* Objects that survive long enough in the survivor
space become tenured and are moved to the
tenured space.

« When memory fills up, a full garbage collection
(perhaps mark-and-sweep) is used to garbage-collect
the tenured objects.

Tenured Objects

Tenured Objects

Tenured Objects

Tenured Objects

Eden

Survivor Objects

Tenured Objects

Eden

Survivor Objects

Tenured Objects

Checkpoint on GC

1. Why GC?
2. What are the main types of GC ?
3. For each main GC:
1. How does it work?
2. What is the main intuition behind it?
3. Advantages?
4. Disadvantages?

Reference Counting
Mark and Sweep

Stop and Copy
Generational

